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An Algorithm for Nonsmooth Convex 
Minimization With Errors 

By Krzysztof C. Kiwiel 

Abstract. A readily implementable algorithm is given for minimizing any convex, not 
necessarily differentiable, function f of several variables. At each iteration the method requires 
only one approximate evaluation of f and its e-subgradient, and finds a search direction by 
solving a small quadratic programming problem. The algorithm generates a minimizing 
sequence of points, which converges to a solution wheneverf has any minimizers. 

1. Introduction. This paper presents an algorithm for minimizing a convex, but not 
necessarily differentiable, function f: RN -* R. We suppose that, given x E RN and 
E> 0, we have a finite process which will find a number f,(x), satisfying 

(1 ) f (x ) - < M?X ) < f (x ) + 'E 

and one e-subgradient g,(x) of f at x; i.e., an arbitrary element of the c-subdifferen- 
tial 

a f(x)= {g E RN: f(y) > f(x) + (g, y - x) - E Vy E R N 

off at x. 
The above assumption is realistic in many applications (see, e.g., Shor [10]). For 

instance, if f is a max-type function of the form 

(2) f(x) = sup{ "(x): u E U} forallx E RN, 

where each 4u: R N -* R is convex and U is an infinite set, then it may be impossible 
to calculate f(x). However, for any positive - one can usually find in finite time an 
e-solution to the maximization problem in (2); i.e., an element u, E U satisfying 

4ui(x) > f(x) - c. Then one may set f(x) = 4u(x) and take g,(x) as any subgradi- 
ent of 4u at x. On the other hand, in some applications, calculating u, for a 
prescribed - > 0 may require much less work than computing u0. This is, for 
instance, the case when the maximization in (2) involves solving a linear or discrete 
programming problem by the methods of Gabasov and Kirilova [3]. 

The algorithm presented in this paper is a descent method. At each iteration a trial 
point is found by solving a small quadratic programming subproblem derived from a 
piecewise linear (polyhedral) approximation to f around the current iterate. The trial 
point is accepted as the next iterate only if this decreases the objective value; 
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otherwise, the new subgradient information collected at the trial point enriches the 
next polyhedral approximation so as to deal with the nondifferentiability of f. The 
accuracy tolerance E is automatically reduced as the method proceeds. The reduction 
is, on the one hand, slow enough to save work by allowing inexact evaluations of f 
far from a solution, and, on the other hand, sufficiently fast to ensure that the 
method generates a minimizing sequence of points. Moreover, this sequence con- 
verges to a solution wheneverf attains its infimum. 

Our algorithm is an extension of the aggregate subgradient method due to Kiwiel 
[5], who modified a descent method of Lemarechal [7] ([5] and [7] require exact 
evaluations). Vasilyev [2, Section 3.7] proposed a comparable method by extending 
the Wolfe conjugate subgradient method [11], which is less efficient than that of 
Lemarechal [7]. We hope that our algorithm is superior to that of [2], since it is 
simpler, does not use resets which slow down convergence, and has much stronger 
convergence properties. 

Some other methods, e.g., [1] and [9], reduce E in a preassigned way, depending 
only on the number of iterations performed. This, of course, may be inefficient. The 
e-subgradient method of Polyak [9] is nonmonotone in objective values, while the 
descent method of Auslender [1] requires continuous differentiability of f. 

It will be seen that there is great freedom of choice in how the algorithm can be 
run. Since any description of specific computational techniques would take up too 
much space, numerical results [4] will appear elsewhere. 

We may add that it would be difficult to extend the algorithm to the nonconvex 
case, as was done by Kiwiel [6] for exact evaluations. Convexity is essential for 
avoiding line searches, which would be impossible in the nonconvex case because the 
noisy function f, is not semismooth (see Mifflin [8]). 

The method is derived and stated in Section 2. In Section 3 we establish its global 
convergence. Computational modifications are discussed in Section 4. Finally, we 
have a conclusion section. 

We shall use the following notation. RN denotes N-dimensional Euclidean space 
with the usual inner product ( , ,-) and associated norm . All vectors are row 
vectors. We will denote by "conv" the convex hull. 

2. The Method. The algorithm to be described will generate a sequence of points 
1, ' . 2 1 2 g . xl, x2,... of RN and search directions d', d2,... in RN and stepsizes tL, t2,... in 

{0, 1}, related by xk+1 = xk + tkdk for k = 1, 2,.. ., where xl is a given starting 
point. The sequence { x k} is intended to converge to the required solution. The 
method will also calculate trial points yk+1 = xk + d k and accuracy tdlerances 
Ek > 0, for k = 1, 2,..., and -k_subgradients gk = g,k (yk), for all k > 1, where 
yI = xl and e1 > 0 is given. 

With each trial point yi we associate the following linearization of f: 

(3) fj (x) f=t?i(yi) + (gi, X - yi) - 2,6J for all x E- RN, 

which satisfies 

(4) f(x)> f,(x) forallx, 
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since gJ E aef(yJ) and f(yJ) > fj'(y') - E/. Thus, at the kth iteration of the 
method, the polyhedral function 

(5) , f k(X) = max{ fj(x):j = 1,... ,k} 

would incorporate all the past subgradient information about f. Hence, one could 
try to find a descent direction for f at x k by solving the subproblem 

(6) minimize f k(xk + d) over all d E R N. 

However, such a cutting plane approach (see [2]) has the following drawbacks. First, 
subproblem (6) may have no finite solutions. Second, and more importantly, using 
subproblem (6) would lead to difficulties with storage and computation after a large 
number of iterations, since fk has k linear pieces at the kth iteration. These two 
drawbacks can be eliminated by using the ideas of Lemarechal [7] and Kiwiel [5], 
respectively, as follows. 

At the kth iteration we shall have a nonempty set jk C {l,...,k} and the 
linearizations fj,j E Jk, given by the (N + 1)-vectors (gi1, fk) in the form 

fj(X) = fk + (gj, x - xk) for all x, 

where If = fj(Xk) for j E jk. To save storage and work per iterations, jk will be a 
small subset of {1,... ,k}, e.g., jk = {k}. Of course, replacing {1,.. . ,k} by jk in 
(5) could yield a poor model of f. Therefore, the dropped past subgradient informa- 
tion will be compensated for by using the aggregate linearization 

k-l(X) = fk + (pk-l, X - Xk) for all x, 

generated at the (k - I)st iteration by the aggregate subgradient (pk 1, fk), satisfy- 
ing 

(7) (pk-Ifk) E conv{(gi, f k): Ij k} 

so that we have 

k-l(x) E conv{fj(x):1 j < k} forallx, 

f(x) >!fk-1(X) for all x. 

Observe that the aggregate subgradient (pk- 1, f) generates a linearization of f in a 
manner similar to any ordinary "augmented" subgradient (g', fj). It will be 
updated recursively so as to accumulate information about nondifferentiabilities of 
f. The available linearizations will define the kth lower polyhedral approximation 
of I: 

f k(x) = max f k(x),fj(X):j E Jk} for all x. 

Since we want d k to be a descent direction for f at xk, we shall find it to 

(8) minimize!k(xk + d) + 'Id12 over all d E RN, 

where the penalty term Id 2/2 will tend to keep yk+1 = xk + dk in the region where 

f ( * ) is close to f(*), and will ensure that d k exists. Moreover, 
uk = 

fk(xk + dk) - [fek(Xk) + Ek] 

yields an estimate of f(x k + dk) - f(xk), which will be used for testing whether 
y k+1 is better than x k. 
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Having motivated the search-direction-finding subproblems, we may now state the 
method, commenting on its rules as follows. 

ALGORITHM 2.1. 

Step 0 (Initialization). Select a starting point xl E RN, an initial accuracy toler- 
ance El > 0, and a stopping parameter E, > 0. Choose two line search parameters m L 

and mR satisfying 0 < mL < mR < 1. Set y1 = xl, Jl = {1}, p0 = g' = gF1(yl) 

I1 = fii = f4(yl). Set the counters k = 1, 1 = 0, and k(O) = 1. 
Step 1 (Direction finding). Find the solution (dk, Vk) e RN x R to the following 

k th quadratic programming subproblem: 

minimize 'Id 12 + v over all (d, v) E R N X R satisfying 

-aj + (gi, d) < v forj e Jk , -ak + (pk-1 ,d) < v, 

where 

(10) a)= f(Xk)+E -)k and a= E(Xk) + E fp 

forE = Ek. Calculate Lagrange multipliers Xk, j E jk, and Xk of (9) and set 

( 1 1 ) (pk - k) Xk (gj, fk) + xk (pk1fk), 
/ 
eJA 

(12) A&k =fE(xk) + E -f 

Step 2 (Accuracy updating). If E> -(MR - mL)Vk/5, set Ek = E/2 and go to Step 
1; otherwise, proceed. 

Step 3 (Stopping criterion). If vk> , S terminate; otherwise, proceed. 
Step 4 (Trial point testing). Set yk+l = xk + d k. If 

(13) ffA(Y) s fek(xk) ? mLVk - 2Ek, 

then set tk = 1 (serious step), set k(l + 1) = k + 1, and increase I by 1; otherwise 
(i.e., if (13) is violated), set tk = 0. Set xk+1 = xk + tkdk. 

Step 5 (Linearization updating). Set ck?+ = Ek. Choose a (possibly empty) set 
Jk c jA and set jkl = jk U {k + 1>. Computeg = gAk+l(yk )and 

(14) 'A+Il =f +(yk+l) + (gk+l, x k+1 _ k+1 2 Ek+1 

fk+l = f k + (gj,xk+l - Xk) forj ek 

(15) jk+1 =ftA + (pk Xk?l - Xk_ 

Increase k by 1 and go to Step 1. 

A few comments on the algorithm are in order. 
As in [5], the kth subproblem dual is to find values of the multipliers Xk, j E jk 

and Xk} to 

2 

minimize- J XAg'+ ?Apkp + X + a ak? 

(16) x,. 
i 
/eAjJ 

subjectto X >0forj EJk,X p> , , Aj+Ap 
j(eJA 
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Any solution of (16) is a Lagrange multiplier vector for (9) and yields the unique 
solution (dk, vk) of (9) as follows: 

(17) d k = _pk 

( 1 8 ) v = {( Ipk(2 + E aJ + Apak - P1k12 + 

where pA and &k are given by (11)-(12). Moreover, any Lagrange multipliers of (9) 
also solve (16). In particular, we always have 

(I19) Xki >, ? for;j E-j Jk Xk '> 0 X k + Xkp=. 

Thus, one may equivalently solve the dual subproblem (16) in Step 1. 
Our rules for aggregating the past subgradient information may be explained as 

follows. First, by combining (7), (11), (15) and (19) with the fact that a convex 
combination of convex combinations is again a convex combination, one can show 
(see [5] for details) that 

( pkk)e conv{(gfjk): 1 j < k} foreachk, 

so that 

fk(x) =fk + (pk, X - Xk) E conv{/,(x): 1 <j < k} for all x, 

and, hence, by (4), 

f(X) > fp + (pk X - Xk) 

(20) = t?(X~k) + E + (pk, X 
_ 

Xk) _-[fex)+ t (20) Mf xk)eKkx k~f(Xk) + fpi 

>f(xk) + (pk, X - Xk)- &k for all x. 

This shows that pk is an &k-subgradient of f at x k. (We may add that gi is an 
ac<-subgradient of f at xk.) Second, it is easy to deduce from (17)-(18) that (d k, Vk) 

solves the reduced subproblem 

minimize 'Id12 + v over all (d, v) e RN+? 

satisfying _k + (pk, d) < v, 

which corresponds to replacingfk by fk in (8). Thus, in a sense, (pk f) embodies 
all the past subgradient information which determined d k. 

To justify the stopping criterion, we note that (20), (18) and the Cauchy-Schwarz 
inequality imply 

(21) f(X) > f(xk) -tVkl/2IX - Xkl + vk for all x, 

so that the algorithm's rules yield 

f (Xk) < f (X) + E121X - Xkl + Es for all x 

and JEA(xk) , f(Xk) + Ek, with Ek < es/5, upon termination at Step 3; in particular, 
xk is optimal if Es = 0. 

Our rules for increasing the accuracy of objective evaluations stem from the 
criteria of Step 4, which is always entered with vk < 0 and 

(22) 5ek < -(mR - mL)Jv 
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Criterion (13) ensures that the sequence { f(xk )} is nonincreasing, since 

(23) f(xk+l) < f(yk+l) + Ck Kf Ek(xk) - k + MLvk < f(xk) + mLVk 

if tk > 0. Thus each serious step leads to a significant decrease in the objective value. 
On the other hand, if (13) does not hold, then x k+I = xk and 

-afk+1 + (g , d k) =JekA(yk+l) -f A(Xk) - 3Ck > mLvk - 5 k 

if et +1 = ck and, hence, by (22), 

(24) -a?k+ + (g 1, dk)> mRvk 

Since mRvk > vk and k + 1 E jk+l, we deduce from (24) that (dk, Vk) cannot solve 
the (k + I)st subproblem (9). Thus each null step results in a significant modifica- 
tion of the next search-direction-finding subproblem. 

If one chooses Jk = 0, i.e., Jk = { k } for all k, then only two past subgradients 
are used for each search direction finding. Of course, using more than two subgradi- 
ents will increase the speed of convergence, but at the cost of increased storage and 
work per iteration. This flexibility may be exploited in particular applications. In 
fact, at any iteration one may calculate more than one C-subgradient, especially for 
functions of the form (2), and use such additional subgradient information for the 
next search direction finding. Our global convergence analysis covers such modifica- 
tions. 

We end this section by commenting on the relationship of our method with other 
existing algorithms. For -' = 0, i.e., Ck = 0 for all k, Algorithm 2.1 reduces to the 
aggregate subgradient method of Kiwiel [5], while if, in addition, jk = .1. ... , k } for 
all k, then we obtain the descent method of Lemarechal [7] (see [5]). The method of 
Vasilyev [2] uses subproblems of the form (9) or, equivalently, (16), but neglects the 
linearization errors alk and alk by setting them all to zero. This unnecessary distortion 
of polyhedral approximations to f necessitates periodic restarts of the method from 
the current point, after which no significant progress occurs until the method 
accumulates new subgradient information. 

3. Convergence. In this section we establish global convergence of the method. 

THEOREM 3.1. Suppose that Algorithm 2.1 generates a sequence {x k} with the 
stopping parameter es set to zero. Then: 

(i) If the method terminates at the kth iteration, then x k minimizes f. 
(ii) If the method cycles infinitely many times between Steps 1 and 2 at the kth 

iteration, then x k minimizes f. 
(iii) If { x k} is infinite, then f(xk) I inf { f(x): x E R N} . Moreover, { x k} converges 

to a minimum point off if f attains its infimum. 

Proof. (i) The first assertion was proved in Section 2. 
(ii) If the method cycles infinitely between Steps 1 and 2, then C and v k converge 

to zero, because C is halved at Step 2, mR - mL > 0, and -vk = pk2 + &k > 0, 

since &a > 0 from (20). Hence, (21) yields that xk minimizesf. 
(iii) Suppose that { X } is infinite. We shall now show that if x- is an accumulation 

point of {xk}, then x- minimizes f. First, suppose that {xk(l)},EL - x- for some 
infinite set L c {1,2,.. .}. Then we may let K = { k(l + 1)- 1: 1 e L} (so that 
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k K k=I x -- Ji and tz = 1 for all k E K) to deduce from (23) and the continuity of f [2, 

p.43] that f(xk) f(5-) and vk-- 0. Passing to the limit in (21) with k E K, we 

obtain f(x) > f(x-) for all x E RN, as desired. Second, suppose that there are only 
finitely many serious steps; i.e., x k = x- for all large k. If we have _k 40, then part (ii) 
above shows that x- minimizes f. Suppose, for contradiction purposes, that we have 
constant Ek = E > 0 for all large k. Let wk denote the optimal value of subproblem 
(16), for any k, so that 

(25a) wk = 4y1pk12 + &k 

(25b) wkA < min{ _llgk +(1 _ ,)pk-112 + iak + (I ak 0 < i L 1) 

from (10)-(12), (19) and the fact that k E jk. Since gk+1 E aAf(yk+l) with yk+1 = 

x- + d'k for large k, the local boundedness of ajf(.) [2, p. 78] implies that { gk } will 
k?1 -k k-t1 k be bounded if {d&} is. Moreover, we have ap = ap, since x = x and Ek = 

for large k. Therefore, one may proceed as in the proof of Theorem 3.5 in [5] to 
deduce from (25), (17), (18) and (24) the existence of a constant C < + oo such that 

0 < wk+1 < wk -(1 - mR)2(wk)2/8C2 

with fixed mR E (0, 1), for all large k. This implies wk 10, and, hence, vk -* 0 from 
(18), (25a) and the nonnegativity of &k. But then E > -(mR -mL)vk/S for large k, 
which contradicts the rules of Step 2. Thus x- must minimizef, if it exists. In view of 
this result, one may use relations (20) and (23) to complete the proof as in Section 3 
of [5] by deducing that { xk} converges if f(xk) > f(x~) for some fixed x E RN and 
all k. 

We omit the proof of the following result, since it may be derived from the proof 
of Lemma 3.9 in [5] by using relation (22). 

PROPOSITION 3.2. If the method generates an infinite sequence { k}, then either 
f(x k) _-X orvk Oandek -* Oask -x oo. 

COROLLARY 3.3. Iff is bounded from below and the stopping parameter Es is positive, 
then the method will terminate in a finite number of iterations, producing an approxi- 
mately optimal point. 

4. Modifications. In this section we briefly discuss possible computational modifi- 
cations of the method. 

In Algorithm 2.1 each decrease of E requires a new calculation of fe(xk) and dk. 

To save this work, one may additionally decrease ? on entering Step 4, e.g., by 
replacing E with KE if - is close to -(MR - mL)Vk/S, where K E (0, 1) is a parameter. 
It can be verified that such modifications do not impair the preceding convergence 
results. 

Suppose that relation (1) is replaced by 

f (x) -e < 4f(x) < f (x), 

which may be justified when f is of the form (2). Then one may delete the factor 2 in 
(3), (13) and (14) and the "+E" from (10) and (12), thus increasing the accuracy of 
the polyhedral model of f. In this case Step 2 may use the test E > -(MR - mL)vk/3 

instead of the previous one. The preceding convergence results remain valid. 
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5. Conclusions. We have presented a readily implementable method for minimiz- 
ing nonsmooth convex functions. It may be viewed as an extension of [5] to the case 
when objective and subgradient evaluations are subject to controllable errors. 
Relaxed accuracy requirements on evaluations allow one to save work at the initial 
stages of calculations, while their automatic tightening at later iterations ensures 
global convergence with no additional assumptions on the objective function that are 
typically required by other methods [1], [2], [9]. 

The method can be extended to constrained problems [4]. Preliminary computa- 
tional experience [4] indicates that the algorithm is promising. However, much more 
work remains to be done before all its possible implementations are fully explored. 
We hope to pursue this subject in the near future. 
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